Relying on plates made from a special ceramic material containing chromium (which absorbs the sunlight) and neodymium (which efficiently converts sunlight to laser light), the newly developed lasers demonstrated an impressive 42% solar-to-laser energy conversion efficiency, outperforming previous technology by a factor of four.
The researchers say the new laser technology will play a key role in JAXA’s “Space Solar Power Systems” (SSPS) project, which aims to put space-based power systems in orbit by the year 2030. By mounting the system on a satellite in stationary orbit 36,000 km (22,400 mi.) above the equator, sunlight would be collected and converted into a powerful laser beam, which would then be aimed at a terrestrial power station and used to generate electricity or produce hydrogen.
Compared to earthbound solar power stations, this new technology not subject to night-time darkness and cloudy conditions, and be able to make use of solar energy 24 hours a day.
No comments:
Post a Comment